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Abstract— Trading in the Brazilian Electricity Free Market 

has several particularities not found in other mature markets, 

making risk assessment a difficult task, particularly when 

capturing forward price curve due to the lack of public price 

references and the information asymmetry among players. The 

forward price curve represents the price at which open energy 

positions at different maturities can be closed at a specific 

moment. This paper analyses the main trading characteristics of 

the Brazilian Electricity Market and proposes three ways to 

capture forward energy prices, how to organize that information 

and analyze it. Additionally, we study the empirical 

characteristics of a set of curves providing the essential 

foundation for modeling and understanding such series and its 

volatilities. We note that these curves have weak time dependency 

and volatility blocks dissipate quickly. We also note that relative 

monthly changes of the prices in the shorter maturity of the 

curve are approximately five times larger than those in the longer 

part of the curve, indicating that market risk declines when 

maturity increases. 

 

Index Terms—Forward curve, Brazilian electricity market, 

energy trading, energy prices.  

 

I. INTRODUCTION 

 he Brazilian Electricity Market (SEB) has several 

regulatory characteristics and particularities that expose 

players to risks factors not common in financial or other 

power markets. 

In this market the vast majority of transactions are 

done in the OTC Market and transactions are not standardized, 

containing in general several embedded derivatives which 

complicate the pricing process and limit the discovery of 

market prices, as prices of these products cannot be compared 

directly. 
1
  

Additionally, the only official price reference is the 

spot price (PLD) which is used to settle all deficits and 
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surpluses in the free and regulated market, assess penalties and 

as a price reference for OTC contracts. However, PLD has a 

limitation because this spot price is the outcome of a sequence 

of computer models called NEWAVE and DECOMP [1] 

which only consider information on how to operate the SEB 

and not from real market information.  

Recently, some organized markets have been created 

but so far, liquidity issues limit the representativeness of these 

exchanges. Moreover, the power purchase auctions for the 

Regulated Market (ACR) do not reflect appropriately the 

prices that are actually negotiated in Free Market (ACL), 

because the characteristics of each transaction are quite 

different, representing different risks for sellers. Lack of 

transparency and information asymmetry are characteristics of 

the OTC market in its initial stage. This complicates the 

process of pricing and risk measurement of energy operations. 

Other factors such as climatic variables, especially 

wind and rainfall, economic performance, system generation 

expansion and regulatory rules also influence market prices in 

different time horizons. 

These characteristics emphasize the need to build 

tropicalized models to attend the specific needs of the 

electricity market. Accordingly, the first step is to identify the 

main rules and characteristics of trading in this energy market 

and understand the risk factors involved in this process. This is 

necessary to define properly what the Electricity Price 

Forward Curve (EFC) represents and how to capture this 

information directly from the market. Based on the forward 

curve, it is possible to understand the term structure of the 

market prices and to assess the effect of potentially important 

variables in the forecasting process and volatility estimation of 

futures prices. Price volatility constitutes vital information for 

pricing and risk assessment models. 

Most market agents have their own individual 

forward curve, which is estimated considering a number of 

information sources, including available quotes in the market, 

agents expectations and operations conditions over different 

time periods. These individual curves rarely reflect a complete 

overview of the market and can be strongly influenced by the 

capturing process adopted by each company and the specific 

energy position of a particular agent. Despite of that, they 

serve as good starting reference for market prices. 

Although the Forward curves are critical for trading, 

they have received little coverage in the literature because 

there is no public information available to study theses 

quantities. 
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This paper proposes an adequate structure to capture 

and organize forward curves in the SEB and shows the main 

empirical features of this price curve.  

The remainder of the paper is divided as follows. In 

section II we describe how the SEB works, specially the main 

issues involved in energy trading. In section III we define the 

concept of the forward curve and suggest three approaches to 

capturing and organizing this information. In section IV we 

analyze in detail the curves in order to map their main 

characteristics. In Section V we present our conclusions and 

suggestions for future work. 

II. TRADING ELECTRICITY IN BRAZIL 

Generators, authorized traders (comercializadores) 

and free consumers (those with energy demand greater than 3 

MW and supply voltage greater than 69kV) participating in 

the ACL are responsible for contracting their energy needs. 

They are free to negotiate prices and contracting terms and 

conditions directly with their counterparts. 

In this environment the free consumers need to 

contract their energy consumption with enough flexibility to 

fit their consumption process. They need to consider economic 

performance and its potential effect on their production as they 

are not allowed to resell energy directly to the market. 

Suppliers generally structure customized products for their 

clients incorporating the volume risk into their own portfolios. 

Although the ACL is a free environment, there are a 

number of rules and procedures, instrumented through the 

Electricity Clearing Chamber (CCEE), which effectively 

define how an agent should operate. The CCEE is responsible 

for the settlement of the ACR and ACL contracts, to calculate 

and publish the PLD, register and measure consumption and 

generation, control compulsory guarantee deposits and 

generate information. 

Some rules are important and directly affect the way 

the market operates. First, all consumers must acquire and 

register physical energy contracts for 100% of their 

consumption. The physical backing has a vital role to protect 

the system from a systemic deficit and inhibit perverse 

speculation. Marketers and generators also need to prove their 

physical backing at settlement. To reduce default risk, all 

agents must deposit guarantees at the CCEE.  

Physical backing is checked monthly based on a 12 

month moving average of energy credits and debits at the 

CCEE. The credits are given by the quantities actually 

generated, registered purchase contracts or a certified 

guarantee given to a generator by the Regulatory Agency 

(ANEEL). Debits are granted to consumers when energy is 

consumed from the grid or generators or marketers when they 

are the seller part at a registered contract. 

If an agent does not have sufficient physical backing 

at a given month, in addition to paying the PLD price for the 

energy in deficit, he receives a penalty given by one twelfth of 

the highest value between PLD and a Reference Value (VR) 

specified by ANEEL (National Agency of electricity) for each 

year, multiplied by the amount of energy in deficit. This 

penalty can be severe, considering that VR for 2012 is R$ 

141.72/MWh and that PLD can range from R$ 12.20/MWh to 

R$ 727.52/MWh depending on the SEB conditions. 

To encourage the construction of alternative 

generation sources of energy in the grid, the government 

created incentives via discount in the distribution system rate 

(TUSD) for those consumers who purchase this energy type. 

These are typically biomass cogeneration plants, small Hydro 

Power Plants (PCH) or wind farms. Consumers pay a higher 

price for this energy as they will be compensated by the 

reduction in the TUSD rate. The discount depends on the 

Distribution concession area where the consumer is located, 

which makes this kind of subsidized energy more attractive in 

certain regions of Brazil.  

Conventional energy is that generated by large hydro 

plants or generated using fossil fuels, or those sources of 

biomass or wind that were not certified for discount in TUSD. 

There is also a type of energy with 100% discount on 

the TUSD rate, which goes through a differentiated 

certification process. 

The CCEE controls the physical backing for each 

energy type where conventional energy cannot be used to 

cover the potential deficit of subsidized energy. Basically, 

there are three types of energy (conventional, I50% and 

I100%), each with its specific rules for accounting physical 

backing. In practice, the differential treatment by energy type 

substantially increase the risk agents have when managing 

their portfolios, because an agent can have a balanced position 

of energy but can be penalized for imbalances between energy 

types. 

Because there is very little available information 

about price curves for I50% and I100% energy and computer 

models NEWAVE and DECOMP only apply for conventional 

energy forecasting prices for different energy types is one of 

the main challenges of operating in the ACL. 

Moreover, the risk profile and variables associated 

with the decision making process for each energy type is very 

different, adding complexity to the contracting process and 

energy portfolio management. 

In fact, the only official information about market 

prices is the PLD. To calculate the PLD, a chain of 

computational models, called NEWAVE DECOMP are fed 

with lots of information about the SEB structural conditions 

and expected rainfall and projected growth in energy 

consumption. This combination of data, called DECK, maps 

operating variables and characteristics of supply and demand 

for energy. The DECK is the input of a dual stochastic 

optimization process that is performed by software NEWAVE 

and DECOMP and the main output of this process is the 

marginal cost of operating the system (CMO) which is then 

used by the CCEE to calculate the PLD.  For details of the 

mathematical formulation of these models and its implications 

see [1]. 

There are many criticisms to the approach used in 

determining the spot price; see [2]. However, the positive side 

to the NEWAVE model is that agents may alter its inputs in 

the DECK to reflect their own expectations. For example, they 

can measure the price effect of delays in expansion premises, 

measure sensitivity to energy consumption changes and 

incorporate climate effects such as El Niño and La Niña.  

Since the PLD is used as the settlement price for the 

CCEE, it becomes the main reference for short term trading. 

Many contracts are PLD plus a premium, also denominated 



 

 

3 

locally as Spread. The Spread varies according to market 

conditions like liquidity and credit risk. Often the value of the 

spread is greater than the PLD itself. 

An important issue when pricing energy contracts is 

related to the real underlying product that should be modeled 

at each time interval of the contract. NEWAVE can create 

various scenarios for future PLDs but because of its high 

sensitivity to certain inputs, like the hydrological scenario, the 

volatility of these prices could be very high representing 

unrealistically the underlying product for an interval further 

than 4 to 6 months [3]. 

As a result, the PLD used to assess long-term 

contracts overestimates the risk and the value of embedded 

derivatives in energy contracts. 

Therefore, it is important to have an alternative way 

to monitor long-term market prices and measure its volatility 

realistically. 

The forward price curve concept is suitable for the 

SEB, as it captures many of the important market features 

because the Forward curve is based on real prices being traded 

and reflects the player’s expectations considering what price 

they can mark to market their open positions [4]. 

Thus, the Forward curve is associated with a market 

vision of energy prices, which incorporates risk factor 

premiums, opportunity cost, liquidity, market concentration, 

and also allows calculate price volatility realistically, because 

prices reflect a market behavior and not an operational 

characteristic of the system. 

III.  ENERGY FORWARD CURVE 

A.  Definition and characteristics 

Let  represents the price of energy defined at t for 

a maturity h where t is the time when the price is measured 

and h is the maturity to the supply of energy. Then a Forward 

curve in t is  calculated for different values of h, that is, 

energy prices for several maturities, measured in t.  

In the SEB, the Forward curve reflects the fixed price 

of a Swap for a certain supply interval, generally monthly or 

annual. Thus, the interpretation of a Forward curve is not that 

of a future contracts traded on an exchange, which is defined 

in a single future point in time. 

We can obtain Forward curves for different energy 

types and for each submarket in the SEB, where PLDs are 

calculated separately.  

 

B.  Capturing 

The Forward curve should reflect the price at which 

any agent at time t, could open or close an energy position at a 

certain maturity h. An exchange Forward curve is calculated 

with effectively closed deals and reflects the intersection of 

supply and demand. In markets where exchanges are illiquid 

Forward curves could be measured based on market price 

estimations. 

Another possibility is to use player’s individual 

estimations as reference for the Forward curve. However, 

these individual estimations can vary not only by market 

information asymmetry, but also due to the risk premium or 

opportunity cost used by each agent. 

To capture this information directly from the market 

we suggest three approaches, which can be applied depending 

on the available information each player has. Notably, players 

with better information would have more realistic estimates of 

price curves than those who only have access to public 

information. 

 

C.  Individual curves based on market interaction 

The first alternative is for each player to use their 

own individual forward curve. Many already have an internal 

process to capture and store this information and despite its 

possible limitations, it can still be used to understand price 

dynamics and for product pricing and risk assessment.  

In particular, most companies do not have a 

quantitative mechanism to build and use these curves and still 

use the trader sentiment as the market prices reference. Bias 

and perspective can have a large impact in these cases, and we 

expect the most active players to have a better quality curve. 

When constructing an individual Forward curve we 

assume that the player has a reliable and large enough network 

of contacts he can consult with, which is not the case in many 

companies, and a competent internal analytical team that can 

complement with analyzing the fundamentals of the market. 

However, many industry players do not meet these requisites 

because they have no active marketing or well informed 

support team. 

 

D.  Pool of individual curves 

The second alternative is to capture using a 

representative group of market players (Pool), as many 

realistic forward curves as possible. With that information 

organized by data capture, maturity and for each energy type, 

we can define statistically representative metrics that reflect 

the electricity forward curve and its dynamics. This could be 

the ideal case as each individual curve from the Pool captures 

both information of real transactions being closed in the OTC 

and the expectations of each player.  Given the characteristics 

of trading in this free market and its liquidity, the Pool can 

realistically capture monthly prices for up to three months 

maturity and yearly prices for the next year onwards for up to 

five years ahead, both for conventional and I50% energy type.  

Before calculating the metrics from the observations 

in the Pool, a statistical treatment should be applied to the data 

to avoid undesirable effects such as the impact of outliers, 

which could occur by players trying to change artificially the 

metrics or agents outside of consensus 

Standardizing Information has many advantages; it 

allows us to compare the curves over time and measure the 

volatility associated with each product.  

Each participant of the Pool would be benchmarking 

their individual curve using those metrics he considers most 

representative. This allows them to have a broader view of 

market prices, because the information is generated by a 

representative and aggregate group of market players. 

This concept may looks simple, but the 

implementation of this structure is essentially complex. Dcide, 

a company specializing in data processing and risk analysis, 
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implemented and operates a Pool of these characteristics since 

January 2012. 

Players are willing to input their individual Forward 

curves to the Pool as long as the information is kept secure, 

used exclusively to calculate the metrics and not revealed to 

any third party. Ensuring players input values that reflect their 

true  vision on market prices, organize this information into a 

logical structure, ensuring transparency and absolute 

confidentiality of participants individual information, treating 

distortions caused by intent to vitiate the general metric and 

ensure long-term sustainability of the Pool are the most 

challenging tasks of this approach. 

Forward Curves built from a Pool of individual 

curves have several desirable features. They reflect a broader 

picture of the market, eliminating the bias any individual 

player may have, and can be evaluated for various standard 

products and time periods. Therefore it can be used as a 

reference to mark to market open positions and used as a 

reliable benchmark proxy to price products with embedded 

flexibilities. 

 

E.  NEWAVE outputs as Forward price proxy 

The third alternative is to try to infer market prices 

based on publicly available information. The problem with 

this approach is that the data reflects an official vision on how 

to operate the system, with little or no information about 

actual trading being done [1]. An alternative approach is to try 

to relate the prices of the individual Forward curve to the PLD 

or other public information that could influence prices and, 

based on this relationship, build a forward price curve using 

only public information. These models should be periodically 

reassessed, since the structure of the energy market is 

dynamic.  

The next step is to organize the curves logically in 

order to study their characteristics in time. We suggest a 

methodology in the next subsection. 

 

F.  Organization 

The Forward curves analyses are related with the 

frequency which the curve is captured (monthly, weekly, etc.) 

and the distance  to the delivery (maturity) of the underlying 

commodity. 

Forward curves can be structured as a set of time 

series for each product quoted by the agent, where the product 

is defined by type of energy and maturity. It is common 

naming these curves according to its product maturity. We 

adopt the following naming rule: M +1, M +2 and M +3 for 

products with monthly supply and maturity equal to 1, 2 and 3 

months ahead, respectively, A +0 for the product that reflects 

the supply from the fourth month ahead to the end of that year, 

and A + n, n = 1,2, .. products of annual supply maturing in n 

years. Table 1 is an example of organized curves from A+0 to 

A+5. 

Some players who don’t have individual curves have 

to take decisions based on public information, particularly the 

PLD.  

Each run of the NEWAVE model gives us 2000 

CMO simulations for each month in a five year horizon called 

the planning horizon [1]. 

 
TABLE I 

INDIVIDUAL FORWARD CURVES FOR A TO A+5 MATURITIES, MEASURED FROM 

AUGUST 2008 TO FEBRUARY 2009. 

 
The CMO is somehow associated with the PLD and 

therefore we can use some of these simulations as a proxy for 

the PLD. The common approach is to truncate each of the 

2000 simulated series of CMO with the minimum and the 

maximum PLD limit, and calculate the monthly average of 

these quantities. These series can be organized in the form M 

+1, M +2, M +3 +0 A, A +1, ..., A n + and used as an 

approximation of the forward curve. We will call forward 

PLD curves those formed by the NEWAVE M +1, M +2, M 

+3 +0 A, A +1, ..., A+n values for each DECK. 

For practical purposes, CCEE configuration DECK 

could be used to calculate a monthly forward PLD.  

We study the dynamics of forward curves for various 

maturities to understand their relationship. Particularly, it is 

important to map key variables that could justify the price 

dynamics in different time horizons and explain its structure 

through a time series model. 

 

G.  Volatility 

The volatility is the main input to calculate risk of 

energy contracts or portfolios, price contractual flexibilities 

and mark to market open positions. 

The quality of the volatility estimations is of upmost 

importance because it influences directly on the premium for 

flexibilities embedded in energy contracts.  

One way to define volatility is as the standard 

deviation of the relative price changes in the forward curve, 

for each time scale of measurement. Volatility is commonly 

presented in a relative manner for the underlying product and 

you can convert volatility to different time scales. 

Let  the price of the forward curve for a A+n 

maturity, measured at t moment in time, then   
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suggests that volatility has a dynamic structure.  Note that 

knowing the conditional probability distribution allows us to 

know the volatility. 

In the next section we will study in greater detail the 

characteristics of the Forward curve from a term structure and 

volatility standpoint. 

IV. EMPIRICAL ANALYSIS OF THE FORWARD CURVES 

The forward curves used in this analysis correspond 

to a major trading firm in Brazil which has one of the biggest 

market shares. For confidentiality reasons we will not reveal 

the name. We captured the information monthly. 

Each captured curve represents the best estimated 

price for delivery of conventional energy in the southeast (SE) 

submarket for each year up to five years ahead. The data were 

sent regularly from the front office to the middle office via e-

mail and a validation process was done to verify the quality of 

information. This information is deemed official within the 

company and used as a reference to analyze its portfolio of 

contracts, calculate risk, mark to market and price flexibilities. 

The dataset considered here is composed of 88 price 

curves quoted monthly, from January 2005 until April 2012. 

Altogether there are 6 sets of price series for maturities A+0 

until A +5. No special treatment was given to the 

observations. Figure 1 shows the described forward curves. 

 
Fig. 1.  Forward curves (full lines) and forward PLD curves (dotted lines) for 

A+0 to A+5 curves from January 2005 to April 2012. 

 

A.  Forward Curve and PLD 

The discussion carried out in sections I and II suggest 

that the Forward's curves are associated with factors that 

influence its dynamics in the short and long term horizons. In 

the short term, these curves tend to have higher variation and 

are associated with factors such as climate and operational 

issues. These factors also affect the PLD, then a first question 

is whether the forward curves are associated with the forward 

PLD curve. The forward PLD curve is preferred to the 

performed PLD because theoretically, this amount reflects a 

projection for the same time horizon we have in the forward 

curve. In Figure 1 we present for each forward curve maturity 

A+0 to A+5 the corresponding forward PLD curve at the same 

measurement time. 

Note that there is some adherence between the 

forward curve and the forward PLD curve for maturities A+0 

to A+4.. 

This characteristic was expected because the prices of 

short-term energy and their contracting decisions are 

influenced by the PLD, because it is the only available public 

price reference. 

When the time horizon increases, current system 

conditions have secondary impact and additional others factors 

such as system generation expansion, market growth which 

depends on macroeconomic performance and the risk 

premium required by market participants begins to dominate 

expectations, and as the forward PLD curve does not reflect 

adequately these issues, the adherence tends to decrease. 

B.  Temporal Dynamics 

From Figure 1 we observe that Forward curves 

reached their highest values in the first quarter of 2008, caused 

mainly by structural gas supply uncertainties that affected both 

the PLD calculations and the player’s expectations. After that 

and in line with the 2008 international crisis, the drop in prices 

was explained by a larger supply growth compared to demand.  

To analyze the dependence structure of the level we 

can work with the delta series, }{ , nAtx  , because the originals 

series are nonstationary. The deltas series for A+5 to A+0 

from January 2005 to April 2012 are presented in Figure 2. 

First we note that the range of variation of curves A+0 and 

A+1 outweigh those of the longer maturity, indicating that the 

volatility in the shorter-term maturities is higher than the 

longer-term. The figure also indicates there is no trend or 

seasonality. 

 
Fig. 2.  Monthly relative deltas (%) for A+0 to A+5 curves from January 2005 

to April 2012 

 

When analyzing the autocorrelation function of 

}{ , nAtx  for the series A+0 to A+5, shown in Figure 3, we 

don’t see a strong correlation, indicating that the temporal 

Time

0
5

0
1

0
0  A  A+1  A+2  A+3  A+4 A+5

2006 2008 2010 2012

-2
0

0
2

0
4

0

 A  A+1  A+2  A+3  A+4 A+5

-1
0

0
1

0
2

0

 A  A+1  A+2  A+3  A+4 A+5

-1
0

0
1

0
2

0

 A  A+1  A+2  A+3  A+4 A+5

0
2

0
4

0

2006 2008 2010 2012

 A  A+1  A+2  A+3  A+4 A+5

-2
0

0
2

0
4

0

 A  A+1  A+2  A+3  A+4 A+5



 

 

6 

dependence structure at the level of the series can be 

approximated by a low-order autoregressive or white noise 

models. In this case, as the temporal dependency of }{ , nAtx   

does not seem to be significant, we can study series functions 

autocorrelations without filtering the data. 

In Figure 4 we present the autocorrelation functions 

for the squares of the deltas, }{ 2

, nAtx  . The figure suggests 

that the values are not significant indicating that the volatility 

has no persistence, and that the effect of extreme events 

dissipates quickly. In fact, many of the events that alter energy 

prices occur within a given month, and don’t affect the market 

for long periods of time. Even in times of high price 

uncertainty, generally associated with crises that impact 

energy consumption or the transition from wet and dry 

seasons, price volatility returns to historical levels quickly. 

 
Fig. 3.  Autocorrelation function of monthly relative deltas for A+0 to A+5 

curves. Dotted lines show a 95% confidence interval. 

 

C.  Volatility 

Volatility is defined by the equation (2) and is a 

function of the square of the relative forward curve deltas. 

Thus, we can study the magnitude of volatilities analyzing the 

delta absolute values probability distributions for each 

maturity. The delta absolute values are shown in Figure 5, and 

the histogram of these quantities in figure 6. Note that the 

frequencies in the histogram are more concentrated in the zero 

neighborhoods for longer maturities, indicating that variability 

decays for longer maturities, as is widely known. Additionally, 

there seems to be some periods where there is more variation 

than others, which could indicate blocks of volatility. 

Note also that Figure 6 shows several peaks for all 

maturities. In the A+0 series the delta absolute value reached 

100%, indicating that in some periods the price doubled in 

value. In this sense, the peaks for maturities A+4 and A+5 that 

occurred in 2006 are atypical when compared with other 

observations and can significantly affect estimates of potential 

models for volatility. With regard to seasonality, we noticed 

no cyclical pattern, and therefore the absence of this effect. 

The histograms shown in Figure 6 indicate more 

concentration around zero value for longer maturities in line 

with the behavior observed in Figure 5, which presents 

absolute deltas with variation decreasing according to 

maturity. 

 
Fig. 4.  Autocorrelation function of the squares of monthly deltas for A+0 to 

A+5 curves. Dotted lines show a 95% confidence interval. 

 

The peaks in the histogram frequencies occur at point 

0 which is the result of numerous repetitions of curves values 

in subsequent observations. These repetitions are justified by a 

rounding effect, as historical values of the curves were filled 

without considering the decimal place, so changes lower than 

$1.00 are not captured by the curves. In the long part of the 

curve, this effect is more pronounced, since the curves tend to 

have fewer changes. Additionally, as there is less liquidity for 

the longer maturity products the trader may take longer to 

perceive a price change. 

 
Fig. 5.  Monthly deltas mode (%) for A+0 to A+5 forward price curves. 

 
Fig. 6.  Deltas (%) absolute value histogram for A+0 to A+5 curves. The 

histogram rage is from 0 to 60 implying that the three higher values are not 

showed for the A+0 curves. 

 

The deltas absolute values medians are showed in 

Table 2 presents for each curve. 
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TABLE II 

MEDIANS FROM THE DELTAS ABSOLUTE VALUES FOR A+0 TO A+5 

CURVES FROM 2005 TO 2012. 

 
 

The medians confirm that the volatility in the first 

three maturities is higher than in the rest. From the median 

perspective, the deltas in A+0 is twice as big as in A+1 and 

approximately five times greater than in the A+5. Medians do 

not incorporate any information about the duration of the low 

and high delta periods, but one way to capture this information 

is to count the number of periods subsequent to the absolute 

variations are above and below its unconditional median. This 

analysis is presented in Figure 7 for curves A+0 to A+5. 

 Values "above" indicate that the variation was 

greater than the unconditional absolute median in that month, 

values "under" indicate that this variation was lower than the 

median. Thus it is possible to measure the size of periods of 

high and low volatility. The numbers in the panels represent 

the sizes of the volatility blocks, which are defined as the 

number of subsequent observations above or under the 

unconditional absolute median. 
 

 
Fig. 7.  Volatility blocks duration. Above and below median for monthly 

deltas for A+0 to A+5 curves. 

 

Figure 7 suggests that the size of the blocks is 

relatively small, 3-9 observations indicating that there is little 

persistence. Hypothesis testing (Runs-test) were performed to 

verify if the independence assumption is reasonable for the 

data of each individual panel associated with each of the 

forward curves. The results of the test-runs indicate that the 

assumption of independence cannot be rejected (p-value > 

0.05 for all curves), so the behavior observed in blocks could 

be generated by a white noise. 

It is not surprising to observe low persistence in the 

absolute returns values if we consider that the data were 

collected on a monthly basis.  

It is important to note that volatility, according to 

equation (2), is not the same as the square or modulus of 

monthly variations. Volatility is the conditional standard 

deviation, which can be modeled as a function of the absolute 

values or squares of monthly variations. Thus, the model and 

the estimator chosen determine the way absolute values of the 

latest variations affect the volatility. 

 

D.  Term Structure 

Although the time dependence structure of deltas in 

monthly forward curves seems to be weak as seen in Figure 3, 

the term structure of forward curves, as a function of maturity, 

could be relevant. In Figure 8 we show a surface representing 

the curves as a function of time and of maturity. 

Note that these curves move similarly in time, 

although the curves A+0 and A+1 show greater variation, with 

clear peaks and valleys. This can be justified because short-

term factors drive the first two years. 

From a maturity perspective, the relationship between 

these curves seems to change in time according to the 

structure dynamic of the series in time. 

One way when modeling the term structure of the 

forward curves is using the Diebold-Li approach [8], or its 

generalizations. These models use a transformation called 

forward rate instead of the original forward curve, and can be 

calculated using the following relationship 
)1(12

,
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Fig. 8.  Time evolution surface of forward curves for A+0 to A+5 maturities 

from January 2005 to April 2012. 

 

The Diebold-Li model is a dynamic model with three 

latent factors for each month where we have quotes. The latent 

factors are associated with loads that reflect changes in the 

rate of forward prices [5]. These models attempt to capture the 

term structure of forward rates. One view of this structure are 

shown in Figure 9 for all forward curves. Note that the 

Median 9.1% 4.5% 2.6% 1.6% 1.6% 1.5%

Ano A+4 Ano A+5Ano A+0 Ano A+1 Ano A+2 Ano A+3
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behavior of these curves is smooth in time and shows that the 

decrease with respect to maturity is exponential at times when 

rates are higher, while in the center of the data found a linear 

behavior. 

 

Fig. 9.  Forward rates for A+0 to A+5 maturities from january 2005 to april 

2012. 

For the dataset considered in this study we adjusted 

the structure proposed by Diebold-Li and noted that the model 

was able to capture the term structure of forward rate, but did 

not produce good results in forecasting forward curve. 

Additionally, these models were not built to model volatilities 

as in equation (2). 

 

V. FINAL CONSIDERATIONS AND FUTURE DEVELOPMENT 

This paper discusses the main issues related to 

trading electricity in the Brazilian free market, showing its 

main characteristics and risk factors. In this sense, the biggest 

challenge is to obtain accurate forward price curves, in order 

to have reliable input to pricing flexibilities, calculate market 

risk and mark-to-market open energy positions. 

We presented three approaches to capture this 

information and suggested the Pool method as the most 

appropriate as it considers aggregate market information and 

not just that of an individual player. 

As a starting point for many other future 

developments, we present an empirical analysis of a set of 

forward curves from one of the main market player, showing 

their main characteristics and providing the foundation for 

modeling these price curves.  

We noted that the temporal dependency of the 

forward curve level is not significant and that delta blocks 

dissipate quickly, suggesting that volatility does not persist. 

We also found that the term structure of the curves evolves 

smoothly, but, the conversion of forward rates to forward price 

curves can be a problem. 

The next steps would be to build forward curve 

models that can reflect the characteristics discussed in section 

IV in order to estimate volatilities realistically and obtain 

projection errors within tolerable levels.  

Preliminary studies indicate volatilities for longer 

maturities (above two years) could be captured by ARCH 

model. For shorter maturities, estimate volatility based on a 

modified standard deviation that consider exponentially 

decreasing weights according to recent historical could be 

appropriate. 

Additionally, we will monitor the consistency and 

quality of information gathered through the Pool to detect new 

behavior characteristics and other complementary information 

to improve the price discovery process in the Brazilian energy 

market. 

 

VI. REFERENCES 

[1] M.V.F. Pereira, L.M.V.G. Pinto, “Multi Stage Stochastic Optimization 

Applied to Energy Planning”, Mathematical Programming 52, 359-375, 1991. 

 

[2] SOARES, S.; CARNEIRO, A.A. F. M. “Reservoir operation rules for 

hydroelectric power systems optimization”, IEEE, Vol. 2, 1993, p. 965-969. 

 

[3] Leme, R.C.;   Turrioni, J.B.;   Balestrassi, P.P.;   Zambroni de Souza, 

A.C.;   Santos, P.S.; “A study of electricity price volatility for the Brazilian 

energy market”, Electricity Market, Jul 2008, pp 1-6.  

 

[4] Pilipovic, Dragana. Energy risk: valuing and managing energy derivatives. 

New York: McGraw-Hill, 1998, cap. 

 

[5] Diebold, F. X., Li C. Forecasting the term structure of government bond 

yields. Journal of Econometrics 130 (2006) 337–364. 

 
 

VII. BIOGRAPHIES 

Henrique Leme Felizatti received the B.S. and M.S., 

degrees in Statistics from University of Campinas 

(Unicamp), Campinas, Brazil, in 2005 and 2009 

respectively. He was senior market risk analyst at 

CPFL Energia and co-founded Dcide Ltda. Currently 

he teaches Statistics in Goias Federal University and 

is Director at Dcide Ltda. His current research 

interests include market risk and portfolio 

management theory, energy derivatives, energy price 

and load modeling. 

Patricio Martin Hansen was born in Rosario, 

Argentina, on Febuary 19, 1971. He graduated from 

the St Pauls School, Cordoba and studied Economics 

at the Universidad de Buenos Aires and an Executive 

MBA at FGV in Brazil. His employment experience 

included the Lloyds Bank, Buenos Aires Stock 

Exchange, Enron and CPFL Energia. Founder of 

Dcide Ltda where he currently works. His fields of 

interest included risk assessment and control in 

energy commodities. 

Luiz Koodi Hotta received the B.S. degree in 

electronic engineering from the Technical Institute of 

Aeronautic (ITA) in 1974, the M.S. degree in 1974 

and the PhD. degree in 1983, both in Statistics, from 

Institute of Pure and Applied Mathematics (IMPA) 

and London School of Economics, respectively. His 

research interests include financial time series 

analysis, risk analysis and copula functions. 

Currently, he is an Associate Professor of Statistics at 

University of Campinas, Brazil. 

Mauricio Zevallos received the B.S. degree in 

Sciences from the Universidad Nacional de Ingenieria 

(UNI), Peru, the M.S. degree in Statistics from the 

University of Campinas, and the PhD. degree in 

Statistics from the Pontificia Universidad Catolica de 

Chile in 2002. His research interests include applied 

statistics, time series analysis, financial econometrics 

and risk management. Currently is a professor in the 

Statistics Department of the University of Campinas 

(UNICAMP), Brazil. 

Fo
rw

ar
d

 r
at

e

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4568047

